• 271.35 KB
  • 2022-06-16 12:32:42 发布

2015-2016学年内蒙古呼伦贝尔市满洲里六中九年级上期中数学试卷.doc.doc

  • 20页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
2015-2016学年内蒙古呼伦贝尔市满洲里六中九年级(上)期中数学试卷一、精心选一选:(每题3分,共30分)1.要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0B.a≠3C.a≠1且b≠﹣1D.a≠3且b≠﹣1且c≠02.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10B.1,7,﹣10C.1,﹣5,12D.1,3,23.方程(x﹣2)(x+3)=0的解是()A.x=2B.x=﹣3C.x1=﹣2,x2=3D.x1=2,x2=﹣34.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=65.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对6.函数y=x2﹣2x+3的图象的顶点坐标是()A.(1,﹣4)B.(﹣1,2)C.(1,2)D.(0,3)7.抛物线y=2(x﹣3)2的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上8.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为() A.y=3(x﹣2)2﹣1B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1D.y=3(x+2)2+19.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.ab>0,c>0B.ab>0,c<0C.ab<0,c>0D.ab<0,c<010.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.二、细心填一填(每题3分,共30分):11.把方程3x(x﹣1)=(x+2)(x﹣2)+9化成ax2+bx+c=0的形式为__________.12.已知一元二次方程x2+px+3=0的一个根为﹣3,则p=__________. 13.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是__________.14.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为__________.15.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为__________.16.若二次函数y=ax2+bx+c的图象经过A(1,0)、B(3,0)两点,则这个函数图象的对称轴为__________.17.当y=__________时,代数式y2﹣2y的值为3.18.写出以3,﹣5为根且二次项系数为1的一元二次方程是__________.19.函数y=x2﹣6x+10的最小值__________.20.二次函数y=x2﹣2x的图象上有A(x1,y1)、B(x2,y2)两点,若1<x1<x2,则y1与y2的大小关系是__________.三、简答题21.(24分)解下列方程(1)x2﹣x﹣2=0(2)x2﹣2x﹣4=0(用配方法)(3)(2x﹣5)2﹣(x+4)2=0(4)2x2﹣4x﹣5=0.22.某工厂在两年内机床年产量由400台提高到900台,求机床产量的年平均增长率. 23.在体育测试时,九年级的一名高个男同学推铅球,已知铅球所经过的路径是某个二次函数图象的一部分(如图所示).如果这个男同学出手处A点的坐标是(0,2),铅球路线的最高处B点的坐标是(6,5).求这个二次函数的解析式.24.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?25.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标. 2015-2016学年内蒙古呼伦贝尔市满洲里六中九年级(上)期中数学试卷一、精心选一选:(每题3分,共30分)1.要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0B.a≠3C.a≠1且b≠﹣1D.a≠3且b≠﹣1且c≠0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:根据一元二次方程的定义中二次项系数不为0得,a﹣3≠0,a≠3.故选B.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.当a=0时,上面的方程就不是一元二次方程了,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.2.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10B.1,7,﹣10C.1,﹣5,12D.1,3,2【考点】一元二次方程的一般形式.【专题】压轴题;推理填空题.【分析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.【解答】解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项. 3.方程(x﹣2)(x+3)=0的解是()A.x=2B.x=﹣3C.x1=﹣2,x2=3D.x1=2,x2=﹣3【考点】解一元二次方程-因式分解法.【分析】根据已知得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣2)(x+3)=0,x﹣2=0,x+3=0,x1=2,x2=﹣3,故选D.【点评】本题考查了解一元关键是能把一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.4.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【考点】解一元二次方程-配方法.【专题】配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 5.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.【点评】本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.6.函数y=x2﹣2x+3的图象的顶点坐标是()A.(1,﹣4)B.(﹣1,2)C.(1,2)D.(0,3)【考点】二次函数的性质.【分析】利用配方法化简y=x2﹣2x+3可以得到y=(x﹣1)2+2,由此即可确定顶点的坐标.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2,故顶点的坐标是(1,2).故选C.【点评】考查求抛物线的顶点坐标的方法.7.抛物线y=2(x﹣3)2的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上【考点】二次函数的性质.【分析】二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).【解答】解:∵函数y=2(x﹣3)2的顶点为(3,0), ∴顶点在x轴上.故选C.【点评】本题主要是考查二次函数的对称轴,顶点坐标的求法.8.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1D.y=3(x+2)2+1【考点】二次函数图象与几何变换.【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选C.【点评】本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.9.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.ab>0,c>0B.ab>0,c<0C.ab<0,c>0D.ab<0,c<0【考点】二次函数图象与系数的关系.【分析】由抛物线的开口向上知a>0,与y轴的交点为在y轴的正半轴上得到c>0,而对称轴为x=﹣<0即得到b>0,所以得到ab>0,C>0,所以即可得到正确的选择项.【解答】解:∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的正半轴上,∴c>0,∵对称轴为x=﹣<0, ∴a、b同号,即b>0,∴ab>0,c>0,∴A正确.故选A.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键.10.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限, 所以,A选项错误,C选项正确.故选C.【点评】本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、细心填一填(每题3分,共30分):11.把方程3x(x﹣1)=(x+2)(x﹣2)+9化成ax2+bx+c=0的形式为2x2﹣3x﹣5=0.【考点】一元二次方程的一般形式.【专题】计算题.【分析】方程整理为一般形式即可.【解答】解:方程整理得:3x2﹣3x=x2﹣4+9,即2x2﹣3x﹣5=0.故答案为:2x2﹣3x﹣5=0.【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.12.已知一元二次方程x2+px+3=0的一个根为﹣3,则p=4.【考点】一元二次方程的解.【分析】已知一元二次方程x2+px+3=0的一个根为﹣3,因而把x=﹣3代入方程即可求得p的值.【解答】解:把x=﹣3代入方程可得:(﹣3)2﹣3p+3=0,解得p=4故填:4.【点评】本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.13.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【考点】根的判别式.【专题】判别式法. 【分析】若关于x的一元二次方程x2+2x﹣k=0没有实数根,则△=b2﹣4ac<0,列出关于k的不等式,求得k的取值范围即可.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0没有实数根,∴△=b2﹣4ac<0,即22﹣4×1×(﹣k)<0,解这个不等式得:k<﹣1.故答案为:k<﹣1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为4.【考点】二次函数的性质.【分析】已知抛物线的对称轴,利用对称轴公式可求b的值.【解答】解:∵y=2x2﹣bx+3,对称轴是直线x=1,∴=1,即﹣=1,解得b=4.【点评】主要考查了求抛物线的顶点坐标的方法:公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=.15.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为x(x﹣1)=4×7.【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7. 故答案为:x(x﹣1)=4×7.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.16.若二次函数y=ax2+bx+c的图象经过A(1,0)、B(3,0)两点,则这个函数图象的对称轴为直线x=2.【考点】二次函数的性质.【专题】计算题.【分析】根据抛物线的对称性得到点A与点B是抛物线上的对称点,易得抛物线的对称轴为直线x=2.【解答】解:∵A(1,0)、B(3,0)两点为抛物线与x轴的两交点坐标,∴点A与点B是抛物线上的对称点,而A(1,0)和B(3,0)关于直线x=2对称,∴抛物线的对称轴为直线x=2.故答案为:直线x=2.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.17.当y=3或﹣1时,代数式y2﹣2y的值为3.【考点】解一元二次方程-因式分解法. 【分析】根据题意得出方程,求出方程的解即可.【解答】解:根据题意得:y2﹣2y=3,y2﹣2y﹣3=0,(y﹣3)(y+1)=0,y﹣3=0,y+1=0,y1=3,y2=﹣1,故答案为:3或﹣1.【点评】本题考查了解一元二次方程的应用,解此题的关键是能根据题意得出关于y的方程.18.写出以3,﹣5为根且二次项系数为1的一元二次方程是x2+2x﹣15=0.【考点】根与系数的关系.【专题】计算题.【分析】先计算出3与﹣5的和与积,然后根据根与系数的关系写出满足条件的一元二次方程.【解答】解:∵3+(﹣5)=﹣2,3×(﹣5)=﹣15,∴以3,﹣5为根且二次项系数为1的一元二次方程是x2+2x﹣15=0,故答案为x2+2x﹣15=0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.19.函数y=x2﹣6x+10的最小值1.【考点】二次函数的最值.【专题】配方法.【分析】利用配方法将y=x2﹣6x+10转化为顶点式y=(x﹣3)2+1,然后再来求函数值的最小值.【解答】解:由原函数的解析式y=x2﹣6x+10,得y=(x﹣3)2+1,∵(x﹣3)2≥0,∴当x﹣3=0,即x=3时,y取最小值, ∴y最小值=1;故答案是:1.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.20.二次函数y=x2﹣2x的图象上有A(x1,y1)、B(x2,y2)两点,若1<x1<x2,则y1与y2的大小关系是y1<y2.【考点】二次函数图象与几何变换.【分析】先根据函数解析式确定出对称轴为直线x=1,再根据二次函数的增减性,x<1时,y随x的增大而减小解答.【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴二次函数图象的对称轴为直线x=1,∵1<x1<x2,∴y1<y2.故答案为:y1<y2.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,求出对称轴解析式是解题的关键.三、简答题21.(24分)解下列方程(1)x2﹣x﹣2=0(2)x2﹣2x﹣4=0(用配方法)(3)(2x﹣5)2﹣(x+4)2=0(4)2x2﹣4x﹣5=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)利用因式分解法解方程求出解即可;(2)先把常数项移到等号的右边,然后进行配方,再进行开方即可;(3)利用平方差公式分解因式,再去括号,最后解两个一元一次方程即可;(4)首先找出方程中a,b和c的值,算出b2﹣4ac的值,利用公式法求出方程的解. 【解答】解:(1)∵x2﹣x﹣2=0,∴(x﹣2)(x+1)=0,∴x+1=0或x﹣2=0,∴x1=﹣1,x2=2;(2)∵x2﹣2x﹣4=0,∴x2﹣2x+1=1+4,∴(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣;(3)∵(2x﹣5)2﹣(x+4)2=0∴[(2x﹣5)+(x+4)][(2x﹣5)﹣(x+4)]=0,∴(3x﹣1)(x﹣9)=0,∴3x﹣1=0或x﹣9=0,∴x1=,x2=9;(4)∵2x2﹣4x﹣5=0,∴a=2,b=﹣4,c=﹣5,∴b2﹣4ac=16+40=56,∴x==,∴x1=,x2=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.某工厂在两年内机床年产量由400台提高到900台,求机床产量的年平均增长率.【考点】一元二次方程的应用.【专题】增长率问题.【分析】利用增长后的量=增长前的量×(1+增长率),设机床产量的年平均增长率为x,根据“某工厂在两年内机床年产量由400台提高到900台”,即可得出方程. 【解答】解:设机床产量的年平均增长率为x,依题意有400(1+x)2=900,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:机床产量的年平均增长率为50%.【点评】此题考查一元二次方程的实际运用,掌握复利公式:“a(1+x%)n=b”是解决本题的关键.23.在体育测试时,九年级的一名高个男同学推铅球,已知铅球所经过的路径是某个二次函数图象的一部分(如图所示).如果这个男同学出手处A点的坐标是(0,2),铅球路线的最高处B点的坐标是(6,5).求这个二次函数的解析式.【考点】二次函数的应用.【分析】由于顶点为(6,5),所以设抛物线解析式为y=a(x﹣6)2+5,代入A(0,2)求出a的值即可求出抛物线的解析式.【解答】解:如图所示.A(0,2),B(6,5).设抛物线解析式为y=a(x﹣6)2+5(a≠0),∵A(0,2)在抛物线上,∴代入得a=﹣,∴抛物线的解析式为y=﹣(x﹣6)2+5.【点评】本题考查的是二次函数的应用,熟知利用待定系数法求二次函数的解析式是解答此题的关键. 24.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【考点】二次函数的应用;一元二次方程的应用.【专题】销售问题;压轴题.【分析】(1)根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=﹣10x2+130x+2300中,求出x的值即可.(3)把y=﹣10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【解答】解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元), 答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点评】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.25.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b、c的值.(2)根据S△PAB=8,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b,﹣1×3=c,∴b=﹣2,c=﹣3,∴二次函数解析式是y=x2﹣2x﹣3.(2)∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P的纵坐标为|yP|, ∵S△PAB=8,∴AB•|yP|=8,∵AB=3+1=4,∴|yP|=4,∴yP=±4,把yP=4代入解析式得,4=x2﹣2x﹣3,解得,x=1±2,把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣3,解得,x=1,∴点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S△PAB=8.【点评】此题主要考查了利用抛物线与x轴的交点坐标确定函数解析式,二次函数的对称轴点的坐标以及二次函数的性质,二次函数图象上的坐标特征,解题的关键是利用待定系数法得到关于b、c的方程,解方程即可解决问题.