- 560.26 KB
- 2022-06-16 12:02:10 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
万方数据中文摘要中文摘要本文研究了pre-Lie代数的扩张,定义了pre-Lie代数的二阶非阿贝尔上同调,并证明pre-Lie代数的扩张为其所分类.考虑阿贝尔扩张的分类,又得到其与二阶阿贝尔上同调的关系.然后,本文通过在pre-Lie代数的Chevalley-Eilenberg复形上定义一种pre-Lie代数结构,得到一个分次微分李代数L.Pre-Lie代数扩张的范畴等价于L上的Deligne群胚,从而为其连通分支之集合所分类.同时,二阶阿贝尔上同调可以通过考察L的切线复形而得到.最后,本文指出虽然pre-Lie代数的二阶非阿贝尔上同调并不天然是PL¥-代数的内在上同调,但pre-Lie代数的中心扩张能被一种二项PL¥-代数的内在上同调所刻画.关键词:非阿贝尔上同调;扩张;Deligne群胚;Pre-Lie代数;代数形变理论;内在上同调I
AbstractAbstractInthispaper,thesecondnon-abelianpre-Liealgebracohomologyisintroducedbyconsideringtheclassificationofextensionsofpre-Liealgebras.Thisnotionisrelatedtothesecondabeliancohomology,whichclassifiesabelianextensions,andthusgetsitsname.Thentheauthorintroducesapre-LiestructureontheChevalley-Eilenbergcomplexofpre-LiealgebrasandconstructsadifferentialgradedLiealgebraL.Theauthorthenprovesthatthecategoryofextensionsofpre-LiealgebrasisequivalenttotheDelignegroupoidDel(L).Thenthesecondnon-abelianpre-LiealgebracohomologycomesnaturallyasthesetofconnectedcomponentsoftheDelignegroupoidDel(L).Further,thesecondabeliancohomologyarisesfromthetangentcomplexofL.Finally,theauthorpointsoutthatalthoughthesecondnon-abelianpre-Liealgebracohomologyisnotnaturallyanintrinsiccohomology,thecentralextensionsofpre-Liealgebrascanbeclassifiedbyanintrinsiccohomologyof2-termPL¥-algebras.KeyWords:Non-abeliancohomology;Extensions;Delignegroupoid;Pre-Liealgebras;Algebraicdeformationtheory;IntrinsiccohomologyII万方数据
CONTENTSCONTENTS中文摘要IAbstractIIChapter1Introduction1Chapter2Preliminaries42.1ExtensionsofLiealgebrasandthenon-abeliancohomology42.2ThenotionofDelignegroupoid62.3DescribeHLie2intermsofDelignegroupoids92.4Thenotionofhomotopyalgebras112.5DescribeHLie2intermsof2-termL¥-algebras15Chapter3Frompre-Liealgebraextensionstothesecondnon-abelianpre-Liealgebracohomology173.1Thenotionofpre-Liealgebraextensions173.2Towardnon-abelian2-cocycles193.3Theclassificationtheorem23Chapter4DescribeH2intermsofDelignegroupoids27preLie4.1TheDGLAstructureonC+1(A;A)274.2ConstructionoftheDGLAL334.3HpreLie2=p0Del(L)354.4Abeliancohomologyastangentcomplex37Chapter5Towardtheintrinsiccohomology405.1Thenotionof2-termPL¥-algebras405.2Centralextensionsofpre-Liealgebras42AppendixAglanceofhighercategorytheory45A.1Thenotionofhighercategorytheoryandintrinsiccohomology45A.2Intrinsiccohomologyin(2;1)-categoricalcontext47References54III万方数据
CONTENTSIndex56致谢58个人简历59IV万方数据
万方数据Chapter1IntroductionChapter1IntroductionExtensionsofgroupsareclassifiedbynon-abeliangroupcohomology.Specially,abelianextensionsareclassifiedbyabeliangroupcohomology.ThisfacthasbeenfoundbyEilenbergandMaclaneinthe1940s([11]).ThentherearealotofanalogousresultsforLiealgebras([1,16,17]),Liesuperalgebras([2,12])andLiealgebroids([5]).Pre-Liealgebras,alsocalledleft-symmetricalgebras,quasi-associativealgebras,Koszul-Vinbergalgebrasetc.,arenonassociativealgebraswhosecommutatorsformLiealgebrasandwhoseleftmultiplicationsformrepresentationsofthecommutatorLieal-gebras.TheyhaveappearedinCayley’sworkonrootedtreealgebrasin1896([9]).Thentheywereforgottenforalongtimebeforearisingfromthestudyofseveraltopicsingeometryandalgebrain1960s,suchasconvexhomogenouscones([28]),affineman-ifoldsandaffinestructuresonLiegroups([20,24]),deformationofassociativealgebras([14])etc.Asurveyofthishistoryandthealgebraictheoryofpre-LiealgebrashavebeengivenbyBurdein[7].In1980s,Kimstudiedtheextensionsofpre-Liealgebrasanddefinedthenon-abeliancohomologyforpre-Liealgebrasin[18,19].However,thecollectionofallextensionsofanalgebrabyanotherisnaturallyagroupoid,ratherthanaset,sothesecondnon-abeliancohomologyshouldbeviewedasthesetofconnectedcomponentsofagroupoid.Moreover,ifthisgroupoidarisesasanactiongroupoid,itisnaturallyconnectedtothedeformationtheory.In2012,Frégierfoundthatthesecondnon-abeliancohomologyclassifyingLiealgebraextensionscanalsobedescribedintermsoftheDelignegroupoid,seeing[13].ThenotionofDelignegroupoidcomesfromtheideasofDeligneondeformationtheory,whichweretransmittedvia[15].Irefer[23]formoreinformationaboutthisapproachofdeformationtheory.TheDelignegroupoidusedinFrégier’sworkarisesfromadifferentialgradedLiealgebra(DGLAforshort)relatedtotheChevalley-EilenbergcomplexofLiealgebras.However,thisDGLAisobtainedbytakingthegradedcommutatorofagradedpre-Liealgebra,thusitisnaturaltoaskiftheanalogousresultsholdforpre-Liealgebras.1
Chapter1IntroductionThereisageneralperspectiveoncohomology,thatistheintrinsiccohomologyforahighercategory.Itisnothingbutthesetofconnectedcomponentsofthehom-spacewithpossibleextrastructuresinducedfromthecoefficents.Thisideawasessentiallyestablishedin[6]anddevelopedrecentlybyLurie([21]).Acomprehensiveaccountcanbefoundin[26].In[30],theauthorpointedoutthattheextensionsofLiealgebrascanbedescribedbyahom-spaceof2-termL¥-algebrasandthesecondnon-abelianLiealgebracohomol-ogythereforecanbeviewedasaspecialcaseoftheintrinsiccohomologyofL¥-algebrasinanaturalway.However,thisapproachreliesontheantisymmetryofLiebracket.Soitisdoubtfulwhetherthiscanbedoneforotherkindofalgebras.Inthispaper,Istudytheextensionsofpre-Liealgebrasandthesecondnon-abelianpre-Liealgebracohomology.ByconstructingasuitableDGLA,IgettheanalogousresultsofFrégierforpre-Liealgebras.Lackingofenoughsymmetry,theapproachencodingthesecondnon-abeliancohomologyintoanintrinsiccohomologyfailsforpre-Liealgebras.However,Ishowthatthecentralextensionsofpre-Liealgebrascanbeclassifiedbyanintrinsiccohomology.Thewholearticleisorganizedasfollows.First,inchapter2,Isummarizesomewell-knownresultsonLiealgebraextensionswithalittledifferentstyleofpresentation,andmakesomeconventions.Forself-contained,IalsoexplainthenotionofDelignegroupoidandhomotopyalgebras.Somenotionsfromhighercategorytheoryareused.So,Iexplaintheminastrict2-categoricalcontextandputthispartasanappendix.Then,inchapter3,Istudytheextensionsofpre-Liealgebrasanddefinethesecondnon-abelianpre-Liealgebracohomologytoclassifythem.Ialsodiscusstherelationshipbetweenthenon-abeliancohomologywiththeabelianone,whichclassifiesabelianex-tensions.AlthoughthoseresultshavebeengivenbyKim([18,19]),forself-contained,Iexplainthemindetails.Then,inchapter4,Iintroduceapre-LiestructureontheChevalley-Eilenbergcom-plexofpre-LiealgebrasandconstructtheDGLAL.Iprovethatthecategoryofexten-sionsofpre-LiealgebrasisequivalenttotheDelignegroupoidDel(L)oftheDGLAL.Then,thesecondnon-abelianpre-LiealgebracohomologyarisesnaturallyasthesetofconnectedcomponentsofDel(L)andthegroupsofnon-abelian1-cocyclesarises2万方数据
Chapter1IntroductionnaturallyastheautomorphismgroupsinDel(L).Further,theabeliancohomologyarisesfromthetangentcomplexofL.Finally,inchapter5,Irecallthenotionof2-termPL¥-algebras.ThenIexplainwhytheapproachforLiealgebrasfailsforpre-Liealgebras.Afterall,Ishowthatthecentralextensionscanbeclassifiedbyanintrinsiccohomologyof2-termPL¥-algebras.3万方数据
万方数据Chapter2PreliminariesChapter2PreliminariesThroughoutthispaper,allvectorspacesareoveragivenfieldk.Tosimplifyno-tations,Ialsomakethefollowingconventions:1.Ifthereisnoambiguity,thecompositesymbol◦willbeomitted.2.IfrisalinearmapfromsomevectorspaceAtothegeneralizedlinearLiealgebragl(V)forsomevectorspaceV,thenforallx2A,r(x)willbealsowrittenasrxwhenitisviewedasalinearmaponV.3.ThesubscriptgofaLiebracket[;]gemphasizeswhichalgebrathisbracketisworking,andwillbeomittedifthereisnoambiguity.4.Thecyclicsumnotationåisusedfrequently,wherethesummationistakenx;y;zoverallcyclicpermutationofx;yandz.Someterminologiesandbasicfactsfromcategorytheoryandhomologyalgebra,suchas5-lemma,complex,groupoidetc.,arefrequentlyused.Therearemanytext-booksonthosetopics,like[8,22,29].2.1ExtensionsofLiealgebrasandthenon-abeliancohomology2.1.1Letg;bg;hbeLiealgebras.bgissaidtobeanextensionofgbyhifthereexistashortexactsequenceip0 !h !bg !g !0:Asplittingofbgisalinearmaps:g!bgsuchthatp◦s=id.Amorphismq:bg!bg′oftwoextensionsisaLiealgebramorphismqsuchthatthefollowingdiagramcommutes:i/p′0/hbg/g/0qi′p′0/h/bg′/g/0By5-lemma,thisq,ifexists,mustbeanisomorphism.Ifthisisthecase,thetwoextensionsbgandbg′aresaidtobeisomorphic.4
Chapter2PreliminariesNowallextensionsofgbyh,togetherwiththemorphismsbetweenthem,formacategory,denotedbyExtLie(g;h).Moreover,thiscategoryisagroupoid,thatisacategorywhoseeverymorphismisinvertible.OnecanthenconsiderthesetExtLie(g;h)ofisomorphismclassesofExtLie(g;h).RemarkExtLie(g;h)isnaturallyapointedgroupoidasitcontainsaspecialobject,whichistheLiealgebradirectsumgh.ThusExtLie(g;h)isnaturallyapointedset.2.1.2Anon-abelian2-cocycleongwithvaluesinhisacouple(w;r)ofanalternatingbilinearmapw:^2g!handalinearmapr:g!Der(h)satisfyingthefollowingequalitiesforallx;y;z2g:[r(x);r(y)] r([x;y])=ad(w(x;y));årxw(y;z) w([x;y];z)=0:x;y;zThesetofthose2-cocyclesisdenotedbyZLie2(g;h).Two2-cocycles(w;r)and(w′;r′)areequivalent,ifthereexistsalinearmapφ:g!hsuchthatr′ r=ad◦φ,andforallx;y2g,w′(x;y) w(x;y)=rxφ(y) ryφ(x)+[φ(x);φ(y)] φ([x;y]):ThesetHLie2(g;h)ofequivalenceclassesofnon-abelian2-cocycleiscalledthesecondnon-abeliancohomologyoftheLiealgebragwithvaluesinh.2.1.3ExtensionsofgbyhareclassifiedbyHLie2(g;h).Moreprecisely,any2-cocycle(w;r)definesaLiebracketonghvia[x+u;y+v]w;r:=[x;y]g+w(x;y)+rx(v) ry(u)+[u;v]h;8x;y2g;u;v2h:ThisgivesaLiealgebrastructureongh,calledthesemidirectproductgnw;rh,andonecanseeitisanextensionofgbyh.Conversely,givenanextensionbgofgbyh,bychoosingasplittingsandidentifyhwithitsimageinbg,onecandefineanalternatingbilinearmapw:^2g!handalinearmapr:g!Der(h)asfollows:w(x;y):=[s(x);s(y)]bg s([x;y]g);8x;y2g;rx(u):=[s(x);u]bg;8x2g;y2h:5万方数据
万方数据Chapter2PreliminariesOnecancheckthiscouple(w;r)isa2-cocycleandthecohomologicalclassofitisindependentofthechoiceofs.Finally,theequivalenceof2-cocyclescorrespondingtotheisomorphismofexten-sions.Thedetailscanbefoundin[1,16,17].2.2ThenotionofDelignegroupoidInthissection,IrecallthedefinitionofDelignegroupoid.Forself-contained,Iexplaintheapproachindetails.⊕2.2.1AZ-gradedvectorspaceisadirectsumV=n2ZVnofcountablemanyvectorspaces.AnelementinatermVniscalledahomogeneouselementofdegreejxj=n.Agradedlinearmapφ:V!Wofdegreekisalinearmapsatisfyingφ(Vn)Wn+k.ThegradedtensorproductoftwogradedvectorspacesVandWisagradedvectorspaceVWwithgrading:⊕(VW)n:=ViWj:i+j=nAgradedbilinearmapispreciselyagradedlinearmapfromgradedtensorproduct.AgradedvectorspaceisaZ-gradedvectorspacewhoseeveryterminnegativedegreevanishes.AZ-gradedvectorspaceissaidtobelower-boundedifitcanbeidentifiedwithagradedvectorspacebyadegreeshifting.⊕AgradedLiealgebraisagradedvectorspaceg=n>0gnequippedwithagradedbilinearmap[;]:gg!gofdegree0satisfies1.thegradedantisymmetry,i.e.[x;y]= ( 1)jxjjyj[y;x],2.thegradedJacobinidentity,i.e.å( 1)jxjjzj[x;[y;z]]=0.x;y;zHerex;y;zareallhomogeneouselementsing.Foranyx2gn,thegradedadjointtransformationadxisdefinedasadx:=[x; ].Thisisagradedlinearmapofdegreen.AdifferentialgradedLiealgebra(DGLAforshort),isagradedLiealgebragequippedwithacohomologicalderivationd:g!gofdegree1,thatmeansagradedlinearmapofdegree1satisfiesd2=0andd[x;y]=[dx;y]+( 1)jxj[x;dy];forallhomogeneouselementsx;yofg.6
Chapter2Preliminaries2.2.2LetgbeanilpotentLiealgebra.OnecanusetheBaker-Campbell-Hausdorffformula111xy:=x+y+[x;y]+([x;[x;y]] [y;[x;y]]) [y;[x;[x;y]]]+21224togiveagroupstructureong.Thisgroupwillbedenotedbyexp(g).Thefullformulacanbefoundinsometextbookslike[3,ch.II].Alternatively,onecanalsoviewgasthetangentLiealgebraofaLiegroupG,thentheexponentialmapexpiswelldefined.Anyhow,onecangetaconnectedLiegroupexp(g)suchthatitstangentLiealgebraisgandthattheexponentialmapisbijective.Notethat,whengisabelian,thegroupexp(g)willcoincidewiththeunderlyingabeliangroupofg.2.2.3Let(g;d)beanad0-nilpotentDGLA,thatmeansforallx2g0,thegradedadjointtransformationadxisnilpotent.ThenthesetofMaurer-Cartanelementsisdefinedas{}1MC(g):=a2g1da+[a;a]=0:2Anya2g1definesagradedderivationofdegree1bytheformulada=d+ada,calledg-connection.Specially,Maurer-Cartanelementsdefineflatconnectionsinthesenseofda2=0.Ifthisisthecase,onecansee(g;da)becomesanotherDGLA,calledthetangentcomplexgaofgata.Thesubspaceg0ofgitselfisthenanilpotentLiealgebra.ThecorrespondingLiegroupexp(g0)actsongasexp(g0) !GL(g)adnexp(x)7 !eadx:=x:ån!n>0Thenthisgroupactsongl(g)byconjugation.SuchanactionisthesameastheadjointactionofGL(g)ongl(g),thusonehasexp(x)φexp( x)=eadx◦φ◦e adx=eadadx(φ);8φ2gl(g):Herethenotationadφdenotestheadjointtransformationofgl(g).7万方数据
Chapter2PreliminariesRemark1InaDGLA(g;d),foranyx2g0;a2g1,onehasadadx(d+ada)=adadx(a) dx:Indeed,foranyy2g,onehas[adx;d+ada](y)=[adx;d](y)+[adx;ada](y)=[x;dy] d[x;y]+ad[x;a](y)=(ad[x;a] dx)(y);whichshowstherequiredequality.Remark2LetgbeaLiealgebraandf(X)beapolynomial,thenalinearmapϕongisahomomorphismifandonlyifthefollowingequalityholds:f(adϕ(x))(ϕ(y))=ϕ(f(adx)(y));8x;y2g:2.2.4Bytheaboveremarks,onecanwritedowntheactionofexp(g0)onthesetofg-connectionsexplicitlyasexp(x)(d+ada)exp( x)=eadadx(d+ada)eadadx id=d+ada+(adadx(a) dx)adadx()eadx id=d+ada+ad(adx(a) dx)adx()eadx id=d+ada+(adx(a) dx):adxThus,theactionofexp(g0)transformsg-connectionstog-connections,anddefinesso-calledgaugetransformationsonthesetofg-connections.Notethat(exp(x)(d+ad2=exp(x)(d+ad)2exp( x):a)exp( x))aThusthegaugetransformationspreserveflatconnections.Thegaugetransformationsonthesetofg-connectionstheninducethegaugeac-tionofexp(g0)ong1byeadx idexp(x):a=a+(adx(a) dx);adxandthisactionpreservesMaurer-Cartanelements.8万方数据
万方数据Chapter2Preliminaries2.2.5GivenanactionofagroupGonthesetS,theactiongroupoidS==Gisthegroupoidconsistsofthefollowingdata:•objectsaretheelementsofS,•morphismsaretriples(s;s′;g),wheres2Sisthe“source”,s′2Sisthe“target”andgisanelementofGsuchthatg:s=s′,•thecompositeisinducedbythemultiplicationofG.Foranad0-nilpotentDGLA(g;d),itsDelignegroupoidDel(g)isdefinedtobetheactiongroupoidunderthegaugeaction:Del(g):=MC(g)==exp(g0):2.3DescribeH2intermsofDelignegroupoidsLieBeforegoingforward,Imakesomeconventionontensorandexteriornotations.First,the0-thtensorpower0Valwaysmeanthegroundfieldk.Ialsoidentifytheexteriorproduct^nVasasubspaceofthetensorproductnVbysettingx1^^xn:=åsgn(s)s(x1xn);8x1;;xn2V;s2SnwhereSndenotesthegroupofn-permutataionsandeachs2Snactsonthetensorsbypermutingitscomponents,i.e.s(x1xn):=xs 1(1)xs 1(n):Forthisreason,Iwillalsodenotetheresultedtensorbyxs 1Inthisway,anyn-linearmapfinducesanalternatingn-linearmapf^,calleditsantisymmetrization,asfollows:notethatann-linearmapfisactuallyalinearmapfromnV,thusonecandefinef^asf^(x1;;xn):=f(x1^^xn)=åsgn(s)f(xs 1(1)xs 1(n))s2Sn=åsgn(s)f(xs 1(1);;xs 1(n)):s2Sn9
Chapter2PreliminariesForinstance,^2Visidentifiedasasubspaceof2Vviax^y=xy yx,andanybilinearmapwonVinducesitsantisymmetrizationw^viaw^(x;y)=w(x;y) w(y;x):Finally,anylinearendomorphismfonVcanbeextendedtoamultilinearmapvianf(x1;;xn)=åx1f(xk)xn:i=12.3.1LetgbeaLiealgebraandMag-module.TheChevalley-EilenbergcomplexisthegradedvectorspaceC(g;M)ofalternatingmultilinearmapsfromgtoM:Cn(g;M):=Hom(^ng;M);withthedifferentialdwhichmapsanyf2Cn 1(g;M)ton;;xk(df)(x1n):=å( 1)xkf(x1;;xbk;;xn)k=1 ( 1)i+jf([x;x];x;;xb;;xb;;x);(2.1)åij1ijni