• 506.17 KB
  • 2022-06-16 12:30:35 发布

两体贝尔不等式的应用.pdf

  • 35页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
©aÒ:O413—?:Ãü“è:10446ÆÒ:2010200375•H“‰ŒÆa¬ÆØ©üNتA^ïÄ):4ï•“:šzBÇÆ‰;’:Ä:êÆÆ‰••:þf&E2013c4 •••HHH“““‰‰‰ŒŒŒÆÆÆÆÆÆØØØ©©©MMM555(((²²²LЬ¤J.é©ïĉѕ‡z‡<Ú8N,þ®3©¥±²(•ªI².<¿£(²{Æ(Jd<«ú.ÆØ©Šö¶:FÏ:cF•••HHH“““‰‰‰ŒŒŒÆÆÆÆÆÆØØØ©©©ÇÇǦ¦¦^^^(((²²²<)•H“‰ŒÆk"3,¦^ÆØ©5½,Æk3ÆØ©¿•I[Ì+Ü€½Ù•½ÅxØ©>f‡Ú’Ÿ‡.kòÆØ©^ušI|8þE›¿#NØ©?ÆãÖ,.kòÆØ©SN?k"êâ¥?1u¢.kòÆØ©IKÚÁ‡®?ч.—ÆØ©3)—·^5½.ÆØ©Šö¶:FÏ:cF ÁÁÁ‡‡‡þfŒ±L«þfåÆÄA,Ù¥þfÅ9þfåÆéõ¯K,¿3þfOŽÚþfÏ&ïÄ¥åX•‡Š^.¤±äþfÅ5´é•‡¯K,,äþfÅ´ØN´.Ï~·‚¬ÏL䘇þfØŒ©5`²´Å,ouŒ©â®k˜X7‡^‡,~PPTâ,zâ,››â,Ý•üâÚkTkâ.Ù¥Eت5äþfÅ5•´˜‡éЕ{.©ïÄ̇gŽÒ´|^®²EÐüNت5ä˜äNÅ5,¿…y²éunþf"Aùت«©n«ŒUVŒ©Å."…c:þfÅ,Œ©,ت,VŒ©Å AbstractQuantumstatescanexhibitmanyfeaturesofquantummechanics.Where,quantumentanglementinvolvesmanyproblemsaboutquantummechanicsandplayanimportantroleinthestudyofquantumcompu-tationandquantumcommunication.Therefore,itisaveryimportantproblemtodetecttheentanglementofquantumstatebutnoteasy.Generallywedetectentanglementofquantumstatebyillustratingitisnotseparable.Therearesomeseparabilitycriterions,forexample,PP-Tcriterion,reductioncriterion,controlcriterion,realignmentcriterionandkTkcriterion.WecandetectentanglementbyconstructingBellinequality.Themainideawedetectsomespeci cstatesbyusingsomeBellinequalitywhichhavebeenconstructedalreadyandprovingtheseinequalitiescandistinguishthreepossiblebi-separableentanglementforthree-qubitstates.Keywords:quantumentanglement,separable,Bellinequality,bi-separableentanglement 8¹1ÚÚÚóóó12ýýý•••£££32.1˜m............................32.2þfX†·Ü.....................42.3—ÝÝ..........................52.4üNކ5Ÿ...................62.5ÜþÈ............................73üüüNNNØØØªªªäääNNNAAA^^^93.1nØ•£..........................93.2E˜{üA^.....................123.3E3Enþ{üA^...............194ooo(((25ëëë•••©©©zzz26i 1ÚÚÚóóól›Ê•V"›•VÐ,þfåÆéŒ´LÚuÐ,)ûNõ²;nØØU)ºy–,Œþ¢¯¢9¢SA^•y²þf寴˜‡¤õÔnnØ.¯õÔnÆ[Ñj±gC*:,éþfåÆÄ)ºJÑj±gCw{,lkͶOÏd"†ÀƒmØÔ,u´±OÏd"˜‡ئ¯/ªJÑþfÅ.þfÅ3ׄuÐþf&E‰Æ+•¥åš~"…Š^.~X,þfÛ/D,þf—©,þfņ,È—?è9þfOŽ.¢Ã´,8c•Ž,<‚éuþfņÔnA:ÚêÆ(Ñ„vkéÐ/n)Úݺ.duþfÅ•‡Š^lr¦Nõ¢öMEÅ¿|^ت5u¦‚´Ä®²¤õ)Å.1964c,ј‡ØªÐ«þfn؆ە¢N´ØoN.¦Ð«ÑÄuEinstein,PodolskyÚRosenÛ•y¢nØVg?¿˜«Û•ÛõCþnØÑATÑlù‡Øª,,3þf寥§éN´Š.Š^3Û•y¢þÚO"镛Ҵت.Ïdت¦¢5/«©Û•¢N.Úþf寤•ŒU."uþfåÆÄ:ù‡Šy?ÚÚåéŒñÄ,ت˜X@Ï󊮲Ñ,•)üNXÚCHSHتÚõNXÚMABKت."uتˆ«ˆ•õ[!ÚØª5ŸŒ±ë•[5].تŠ3þf&EL§¥kéõ•‡Š^,Ïdت2•A^Nõ+•.~X(þfÏ&S5Úïáþfú5~Ï&E,5.•#•rتѴþf&E?§¥••‡Ú•ä]Ô5¯Kƒ˜.õNت8Ü®²dWWZB|^©*ÿŠÑ,ùت¡ŠIO"ت,Ù¥•)MABKØªŠ•˜«AÏœ¹,uÿ˜MABKتØUuÿ˜Å.éup‘XÚ,ÏL|^•õÿþ˜,Ñ•rت.ù1 ?˜Úr?˜Xš½•5¢y².ùت—õN؇••[©a[12],3©z[2]¥ŠöÏLت˜‡8ÜénNXÚʼn•Щa.,GHZ´4ŒzŠMABKت•˜.Œ±•Œ8ÜŠ,•)í2GHZ.Chenetal˜‡"unþf"A9©*ÿŠØª[22],§Œ±?¿XÅêŠz/Š.¤kEÑØªÑk/éþfÅ5‰Ñä.´EÑ•Ðp‘õNXÚØª„´é(J,¤±3c<¤ïÄÄ:þ‰?˜ÚA^l鮕•£‰•ݺÚn).3ë•©z[1]Ú[6]¥,Šö‰ÑäüNþfتڧ4ŒŠ.©̇8Ò´|^ù‡•{5䉽þfÅ5¿y²©z[5]¥˜‡•‡(Ø.2 2ýýý•••£££·‚Äk0˜3©ïÄ¥~^˜ÄVg.2.1˜m3þf寥,·‚r‡*âf$ÄG¡•þf.éu?¿ÕáÔnXÚ·‚ÑŒ±|^˜‡‘kSÈ$ŽE•þ˜m(•Ò´Hilbert˜m)5£ã,·‚¡ù‡˜m¡•˜m.î‚5`,þf寥˜m´*¿Hilbert˜m,Ï•3þfåÆ¥Ø•)k•‘¥þ,„•)Õ‘¥þ,,ù¥þ3Hilbert˜m¥´vk.˜m¥˜‡þfŒ±^Hilbert˜m¥˜‡¥þ5IP,).Ž´1˜‡^ÎÒji"5IPþf,rù‡¡•m¥,rhj"¡•†¥.¥þŒ±éXÚ?1£ã.Hilbert˜mkXe½Â:(1)§´˜‡E•þ˜m,•þ^ÎÒjiL«.(2)ü‡þfŠSÈhji˜‡Eê,¿…¬÷v±eA‡5Ÿ[10]:a)½5:hji0,Ò¤á…=ji=0;b)‚55:hj(aj1i+bj2i)i=ahj1i+bhj2i;c)é¡5:hji=hji:1(3)ji½Â•:kk=hji2.Äk3eL‚¥‰Ñ˜¡•DiracPÒIOPÒ,L‚†>éAþfPÒ,m>´ÙêÆ¿Â.3 þfPÒêÆ¿Âji•þ,EHilbert˜m¥•þhjjiéó•þ,•Ò´Ý•þhji•þjiÚjiSÈjiji•þji†jiÜþÈjiji;j;i•þjiÚjiÜþÈhjAji•þjiÚAjiSȧd/§•þAyji†jiSÈ3þf寥´˜‡•ÄVg,lêÆþù,þfÒ´˜‡Hilbert˜mE¥þ,Œ±´lѽëY.©¤¦^Äþ´lÑ.2.2þfX†·ÜX†·Ü´pþf寥²~-ü‡Vg,§‚Ñ^5£ã‡*XÚG.Š•&E1Nþf´þf&E˜‡Ø%Vg,˜‡Xþf¥ˆU¤©XêŠ,S܃ÏfÚŪь±Ö1<‚½&E,·ÜÓ•Œ±^5Š•&E1N.´ù«•‡þf›,öp,•;ÚDx,/¤þf&EØù˜#ïÄ+•.e¡lêÆÝ5Lãþf.1.þfXþf´EHilbert˜mþ˜‡ü•ÝE•þ.•Ñü3²;&E¥´½G,˜„L«•0½ö1,©OéAuþf"AGj0iÚj1i,þf"AG†²;G•̇«OÒ´§Œ±?uùü‡²;G?¿EXê‚5|Ü.•Ò´`,þf"AXŒ±?uj0iÚj1iƒ‚5U,^êÆÎÒL«•ji=aj0i+bj1i4 Ù¥,a,b÷v8˜z^‡:jaj2+jbj2=1éuEÜXÚ,þfXÚG˜m´fXÚGÜþÈ.=éunNEÜXÚ,ÙþfX•Xji=ajiijiijiii12niÙ¥,jii•1i‡fXÚG.k2.þf·ÜXJ˜‡þfXÚ´dNõØÓ¥jii;i=1;2;N£fXÚ¤,z‡fXÚ3TXÚ¥±(½VÇÑy,ù‡XÚ¤•·ÜXÚ.·ÜXÚG¡•·Ü.·ÜŒ±^˜‡Ý5£ã,·‚¡§•—ÝÝ.—ÝݽÂ3e˜!‰•[0.Ù¥XÚ·Ük˜‡Ì‡O.X=pijiihijidu´˜‡’Žf,§äk8˜¥þXjni,Xjnihnj=1;nhn0jni=n0n;XXtr2=pptrjihjihj=p21ijiijjiiji·‚Œ±wtr2==éuXâ1,éu·Üo´u1.2.3—ÝÝ1.—ÝݽÂ5 þ¡J^ji=aj0i+bj1i5L«˜‡þf"A,ùÒ´þfåÆþ^¥þ•{5£ãþfXÚG.Ï~·Ü•U^—ÝÝŠó5•x,ØU^¥þŠó5•x,=ØU`ji´˜‡·Ü.,˜•¡,X²~^5•˜‡¥þji,Ø^—ÝÝ5L«.¢Sþ,—ÝÝ•ÐA^3u´£ãEÜþfXÚ˜‡š~Ðóä.—ÝÝŠó•£ãØ(½þfXÚJø••{ü•{,—ÝÝ•²~¡•—ÝŽf.bXÚ?uXjiiVÇ´pi,Kù‡XÚXnB´fpi;jiig,ùžù‡XÚ—ÝÝÒŒ±P•X=pijiihij:iPÙ¥(1)02:16 pÏdŠâ·‚ت(5)Ñji=(j11i+j33i)=2´Å.P2p1x~2:•Ä4ŒÅji=i=12jiii·ÜD((x)=4I+(1x)jihj,Ù¥0x<1,e¡ä(x)Å5.dþ¡E˜©Û•N´óêž,úª(6)éu?ÛüN·Üþf•´¤á,ÏdA^úª(6)?1e¡OŽp1Tji=(j11i+j33i)=2=p10012012x001xB42CBCB0x00CxBC(x)=I+(1x)jihj=B4CBxC4BB000CC4@A1x002x24010101B01CB0iCB10Cx=@A;y=@A;z=@A10i001010001BCBCB0010CBCxx=BBCC;B0100CBC@A100001000iBCBCB00i0CBCxy=BBCC;BB0i00CC@Ai000010010BCBCB0001CBCxz=BBCC;BB1000CC@A010017 01000iBCBCB00i0CBCyx=BBCC;BB0i00CC@Ai000010001BCBCB0010CBCyy=BBCC;BB0100CC@A10000100i0BCBCB000iCBCyz=BBCC;BBi000CC@A0i00010100BCBCB1000CBCzx=BBCC;BB0101CC@A0010010i00BCBCBi000CBCzy=BBCC;BB010iCC@A00i0011000BCBCB0100CBCzz=BBCCBB0010CC@A0001Rxx=tr((x)xx)=1x;Rxy=tr((x)xy)=0;18 Rxz=tr((x)xz)=0;Ryx=tr((x)yx)=0;Ryy=tr((x)yy)=x1;Ryz=tr((x)yz)=0;Rzx=tr((x)zx)=0;Rzy=tr((x)zy)=0;Rzz=tr((x)zz)=1x;lk01B1x00CBCBCR=B0x10C;BC@A001x01(1x)200BCBCTB2CRR=B0(1x)0C;BC@A00(1x)2100T23jERRj=010=((1x))=0001=(1x)2,21+2=2(1x),¤±kppmaxtr((x)B)=21+2=22(1x)p¤±22(1x)>2ž,=0x<0:29289ت(5)ÒUuÿ(x)Å5.3.3E3Enþ{üA^e¡·‚|^EgŽ5y²½n3.y²:éunþf"AVŒ©·‚Œ±w¤´üNœ¹,Ïd·‚Œ±A^E5y²T½n.éu¤knþf"A,du3[14]p(JhB1i22Œ3121121hD3i=(1+~a1b~1)hB3i+(1~a1b~1)22219 Š•˜‡~f·‚•Ä3S123¥,,y²(16)ª.du²þŠ‚55Ÿ,·‚•I‡?ØXœ¹,d–—AV©)½n[34],3S123pz‡XŒ±L«•ji=(cosj01isinj10i)j0iji12ji3:(17)•ÄnÜ©,éu1˜‡*ÿöÀJ©*ÿŠ•A1,A2,éu1‡*ÿöÀJ©*ÿŠ•B1,B2,éu1n‡*ÿöÀJ©*ÿŠ•C1,C2.Ai=~ai~;Bj=b~j~;Ck=~ck~;~a=(a1;a2;a3);b~=(b1;b2;b3);~c=(c1;c2;c3);iiiijjjjkkkkÙ¥i;j;k=1;2.HABC=HAHBHC,Ù¥dimHA=M,dimHB=N,dimHABCc=Q.-L,LÚL©O´AÏj+SO(M),SO(N)ÚSO(Q))¤f,LA=fjjihkjjkihjjg,1j•šP“—±¿!3d,„‡AOaºI•3ïÄ)Ïmé·•ÏÚ"~.aÜt!dˆÓÆ|±Ú•Ï!a·[