• 59.50 KB
  • 2022-06-17 14:52:46 发布

2011cb933300-g基于纳米结构的新型柔性纤维基可编织光伏器件重要基础

  • 22页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
2011CB933300-G基于纳米结构的新型柔性纤维基可编织光伏器件重要基础Thebodyisstraightanddoesnotmaketheline;itsbodyisnotcorrect,althoughtheorderisnotfrom.Everymanhasabrightspirit,andthemoonisespeciallybrightatthemidautumnfestival.Whenthreemendo,theremustbemyteacher:choosethegood,andthebad.LookingintothelandscapeofDongtingLake,thereisagreensnailinthesilverplate.Thetoastinvitesthebrightmoon,totheshadowbecomesthreepeople.ThisarticleiscontributedbytopjzDOCdocumentsmayexperiencepoorbrowsingontheWAPside.ItisrecommendedthatyoufirstselectTXT,ordownloadthesourcefiletothelocalview.ProjectName:newflexiblefiberbasednanostructurebasedonBraidedphotovoltaicdevicesbasedonimportantchiefscientistZouDechunofPekingUniversity:startlife:2011.1to2015.8dependingontheDepartmentofMinistryofEducationTwo,expectedgoalsThisprojectaimstomakefulluseoffiberbasedmicro/nanostructuremodelofphotovoltaiccellscanbewovenandinterface/marginaleffectsignificantlythesetwocharacteristics,in-depthstudyofthebasicphotonic/nanomesoscopicspacebetweenthespecialunitcarriertransportmechanism;toexplorethemacromodulebuildingdesignnovelassembly,nanodevicesunitintheprocessoftheintegrationmodeandrelatedmaterialsandnewsynthesismethods;the designandimplementationofoutstandinginnovativefeaturesofhighefficiencyandlowcost,flexiblephotovoltaicelementstructure,efficientphotonmulti-scaleoptimizationofbatterydecreasedandbroadspectrumabsorptionstructure,developandperfectwithindependentintellectualpropertyrightsmodelcanweavephotovoltaictechnologyandbuildanewbatterymoduletoestablishanewmethodanddevicecharacterizationsystem.Thefollowingspecificobjectivesandtargets:specifictargetsandindicatorsareasfollows:1.toclarifythetransportmechanismofseparationandnonuniformfieldundertheactionofthephotogeneratedcarriers;establishconstructingfunctionalnanostructuresnewmethodwithphotoelectricactivityinextremecurvaturesurfacemultiscale;2.basedonmicro/nanocompositestructure,hasdevelopedwithindependentintellectualpropertyrights,moreefficientnanocarrierchannelstructuremodelofflexible/fibrousphotovoltaicdevices,morethan6%efficiency,thebatterylifeof>1millionhours.3.3-5novelphotosensitivematerialssuitablefornanostructurephotovoltaicdevicesaresynthesized,withaextinctioncoefficientof105M-1cmhasdeveloped2-4novelsolidstatecarriertransportmaterialsfornanostructuredphotovoltaicdevices;4.theestablishmentoffullspectrumlightresponsetheory,thesynthesisof2-3photoelectricconversionefficiencyishigherthan8%ofthefullspectrumlightelectrode/photosensitivematerials;5.developedwithhighphotonabsorptionproperties,broad-spectrumantiwovenflexible braidedbatterymodule,batterymoduleareaofmorethan100*100mm2.6.,applyforinventionpatents20~30,publishedhigh-qualitySCIpapersmorethan80;7.,morethan60doctoralcandidates,postdoctoral15ormore.Three,researchprogramGeneralideaThereisahugescalebetweenthemacrostructureandmicronanostructuredevices,thereforetheapplicationofnanomaterialsinmacroscopicsemiconductordevicesencounteredmanyobstacles,including:nanosizeeffectaggregationquenching,photonantiinefficient,difficultrealizationandbroadspectrumabsorptioncellmaterialtransmissionlimitation.Toexplorethemesoscopicstructurepotentialofthedevice,andtooptimizethemulti-scaleassemblystructureofthemolecularaggregatenanosemiconductormicroelectrodecompositesystem,Itisanimportantresearchapproachtofundamentallyincreaseandstructuredifferencesandtodeepentheapplicationofnanomaterials.Especiallythesuperlightcurrentphenomenonfoundinourpreviousstudy,derivedfromtheelectrodesubstrateofnonplanarstructureistoprovideanewwayfordesigningnoveloptoelectronicdevicesincludingnewandhighefficiencyphotovoltaiccells,predictsthepossibilityofthiskindofphotovoltaiccelltheorytofurtherimprovetheefficiency.Inaddition,efficientlightharvestingisaprerequisiteforefficientphotovoltaiccells;photovoltaiccellsinthetraditionalphotonabsorptionusingtype(Figure4.1.1A),namelythroughtherefractionofincidentphotons throughthetransparentelectrode,thesemiconductorwindowfigure.1.1Aasphotosensitiveinterfaceabsorption.Thelightpathoftraditionalbatteriesissimple,butthereflectiondissipationisveryseriousatdifferentinterfaces.Thedesignpointofhighefficiencylightharvestingstructureisverylimited.Inaddition,materialssuchaslighttransmittingsurfaceandelectrodemusthavehighconductivityandhightransmittance,whichlimitsthechoiceofbatterymaterialandthedesignfreedomofbatterystructureandshapeseriously.Figure4.1.1differenttransmissionmodeofourresearchplandiagramisformicronanoconfinedspaceopticsandelectronicsbehaviorisverysensitivewiththefeaturesofphotovoltaiccells,assembledinnanomicrofiberthroughtheunitwillhaveDSSC,CIGS,siliconphotovoltaicfunctionAnewtypeoflowcostandcanproducephotovoltaiccelldevicesandopticalfiberformingdimensionalmesoscopicstructureofelectrodesubstrateinhighlightscattering/reflectionopticalfiberdevicethewholestructuredesignandthephotosensitivityofamixtureofdifferentweavingonthebasisoftheconstructionofhighefficiencyphotonicphotovoltaiccellmodule,reducingantibroad-spectrumabsorption,inordertoexploretheapplicationofmultiscalenanostructureassembledinthesemiconductordevice,theultimaterealizationofphotovoltaicbatteryandbatterymodule,andflexiblewoven.Theweavingstructurehasahighdegreeofstructuralflexibility.Thesizeofthenanostructuresissimilartothephotonwavelength,andthescatteringanddiffractionbehaviorisremarkable.Throughthereasonableassemblyofhighsurfaceareananostructureandmesoscopic braidedstructure,thehighefficiencyphotoncaptureofscatteringorlightguidingpatterns(FIGS.4.1.1BandC)canbeachievedtoreplacethetraditionaltransmissiveopticalpath.Thismap.1.1B,thinkingnotonlyforhighefficiency,broad-spectrumantiphotonabsorptionopticalstructuredesignprovidesanewstartingpoint,alsocanmaketheelectrodematerialgetridoftransmissionconstraints,toreplacethetraditionaltransparentelectrodematerialswithhighconductivitymetalmaterialssuchasenvironmentalprotection,stableandcheap,greatlyreducethecost,improvetheconductivityandthestabilityofthedevice,andrealizethediversityofphotovoltaicmoduleform.Differentfromtheflatsurfaceofthefibersubstratesurfacecanbethegrowthofnanostructurehasshapeddivergentroots,moreeasytoconstructhighdensityphotonabsorptionandchargeseparationofinterfaceandorderlylong-rangecarriertransportchannelsexisteasiertoconstructhighdensityphotonabsorptionandchargeseparationofinterfaceandorderlylong-rangecarriertransportchannelsexistmoreeasilyconstructsystem.Toovercomethebottleneckoftraditionalnanoscalematerialsanddevicesinchargeseparationandchargetransportarea.Thesystemovercomesthebottlenecksoftraditionalnanoscalematerialsanddevicesinchargeseparationandcarriertransport.ThetraditionalnanoscalematerialsanddevicesarethebottleneckinchargeseparationandcarriertransportFigure4.1.2,thecarrierchannelphotovoltaiccellmorphologywithdifferenttopologicalstructureischangedfrom"flatstructure"to"braidedstructure",whichisabreakthroughof traditionalconcept.Whatisworthmentioningisthatthebatterystructureofonecellishighlysymmetrical.Inthesamerotatingplane,theoutputpowerofthebatteryhaslittlerelationwiththeangleofincidentlight.Byoptimizingthestructure,thesensitivityofthemoduleoutputtotheincidentangleofsunlightcanbesignificantlyreduced,andtheresultsofthisprojectwillbemoresuitableforthesmoothpowersupplyofmobiledevicesandtheaveragedaylightefficiency.Inaddition,highflexibilityandflexibilitygreatlyenrichtheappearanceofphotovoltaiccells,whichcanmeetthespecialneedsandurgentneedsofthenationaldefenseandfieldportablerenewableenergysystemsinthefieldofnationaldefense.Theprojectresearchwillfocusonthecoreofdeviceresearch,carryoutextensiveresearchonmaterialsandmechanisms,andfinallyachievethereliableandefficientfiberbatterydevicesasthemainresultsoftheproject.Inordertoensurethespecificationandcredibilityoftheproject"sresearchdata,theprojectisplannedtobeunifiedmanagedintheorganization,andthetaskgroup1isstudyingtheoptimizationofthedeviceprocessAtthesametime,responsiblefortheformulationofrelevanttestspecifications.Thedataofthefiberstructureandbatteryperformanceofthekeyresearchgroupoftheprojectwerepublishedbeforethepublic,andthechiefleadoftheprojectwasresponsibleforarrangingspecialpersonnelforunifiedmanagement.Overalltechnicalapproach1)basedsolarcellconductivefiberbraidedconductivefiber wovenknittedbasedphotovoltaiccellsphotovoltaiccellmodulecanbepreparedstartingfromthefiberelectrodesubstrate,thefirstpreparationofflexiblefibercell,andthenwovenforthebatterymodulecorrespondingtotheconductivesubstratestructurecanalsobedirectlyfromthescreenmaking,byassemblingnanodevicesunit,batterymoduleforknittingstructure:preparationscheme1:firstthepreparationofflexiblefibercellandbatterymodulecorrespondingtoweave(Figure4.2.1):Figure4.2.1PreparationschemeoffiberFlexibleDye-sensitizedphotovoltaiccellunitTheuseofcolloidchemistryandothermeansintheappropriatesubstrateconductivefiber,combinedwithimpregnationsintering,thermalsprayingtechnology,formingamulti-levelopticalmultilayerfunctionalsemiconductorthinfilmmicro/nanostructure,assembledfiberphotovoltaicbatterycanwork.Itisworthmentioningthattheelectrodematerialhereisalsonotsubjecttolighttransmissionrestrictions.Then,thefibrousdevice(diameter<0.15mm)weredesignedaccordingtotherequirementsbyweaving,knittingpositioningequipmentindustrialization,thetwoelectrodesareproperlyconnectedinseriesandparallel,formedinlinewithphotovoltaicmoduleneeds.Finally,thebatteryneedstobeencapsulatedandprotected.Or,theencapsulatedcarriertransportmaterialisnotassembleddirectly,andthefunctionalfiberontheelectrodeismixedwiththepairofelectrodefiberstobewovenintoabatterymodule.Preparationofscheme2:directlybythe weavingstructureofconductivesubstrate(seeFigure4.2.2):throughsimilarpreparationtechniquesinscheme1,conductivewiremeshormultistrandcompositefibersubstrateassembleddirectlyonthedeviceunitcorrespondingtotheformationofwovenworkelectrodestructure.Then,withthepairofelectrodes,differentfromthepreparationscheme1,theelectrodeshereneedaworkingareathatmatchestheworkingelectrodes.Becausephotonscanenterbythesideoftheworkelectrode,Onthesameelectrodematerialwithoutlightlimitationandcanformaplanarstructurecanalsobeusedinweavingstructure.Finally,thenecessaryencapsulationprotectioniscarriedouttofurtherimprovethestabilityofthebattery.Figure4.2.2preparationprogram3:Audio-visualstudentmethod:Fig.2flowchartofpreparationschemeThedirectuseofconductorfiberelectrolyticreaction,themodulationeffectofelectricfieldandelectrochemicalreactioninthefiberelectrodesurfacecorrosionorgrowthoforderedporousstructure,constructhighdensitychargeseparationofinterfaceandorderlylong-rangecarriertransmissionchannel.Figure4.2.3electrochemicalpreparationoforderedporoussemiconductorfiberelectrodepreparationscheme4:templatemethod:thepolymerandaluminaasafilmmaterialisdepositedonthefiberorelectrochemicalfabricationofporousmembrane template,andthenfillthesemiconductorcolloidaltemplatematerialautomaticpyrolysisafterfiringorpHtodissolve,leavingaporoussemiconductornanoorderedstructureandorderlytheconstructionofhighdensitychargeseparationofinterfaceandorderlylong-rangecarriertransmissionchannel.Figure4.2.4fabricationofporousorderedsemiconductorfiberelectrodesbytemplatemethod2)fiberbasedphotovoltaiccells,fiberbasedphotovoltaiccells,suchas4.2.5,fiberbasephotovoltaiccellsincludingfiberbaseandsinglecrystalnanowiregrowingperpendicularlyonthefibersubstratesurface.Inthepreparationprocess,theITOtransparentconductivelayerandtheZincOxidecrystallayeraresuccessivelyplatedonthefiberwhichremovesthefiberopticcortex.Then,ZincOxidenanowiresweregrownbyhydrothermalmethodtocoverthefibersurface.Finally,theelectrodeissensitized,theholetransportlayeriscoated,andtheelectrodeisassembledtocompletethepreparationoftheunitcell.Intheprocessofthebatteryoperation,theexternallightisintroducedfromoneendoftheopticalfiber,andthephotonpassesthroughthefibercore/ITOinterfacerepeatedlythroughthefibertransmissionprocess,andpartiallypassesthroughtheinterfaceandreachesthedyemoleculetobeabsorbed.Theabsorptionofphotonsbythebatteryisgreatlyincreasedbymanytimesofinterfacereflection.Aboutthistypeofbattery,onthisbattery,weremainfocusedwearestillfocusedontheopticalfiberstillflexibleconductivesubstratewasfabricatedwithhighdensitychargeseparationofinterfaceandorderlylong-rangecarriertransmissionchannelinelectro-opticinflexibleguide.Ahigh densitychargeseparationinterfaceandanorderedlong-rangecarriertransportchannelareconstructedonthefibersubstrate.Workingprinciplediagramof4.2.53Dfibernanowiremixeddyephotovoltaiccelldesignandschematicdiagram3)designandsynthesisofphotosensitiveandcarriertransportmaterial)designandsynthesisofnewphotosensitivecellstructureofcarriertransportmaterialcarriertransportmaterialandputforwardnewrequirementsforthedevelopmentofdesignmaterials:a)fiberelectrodeinterfacialtensionsignificantly,photosensitivefilmthethicknessoftheneedforacorrespondingreductioninordertoensurethestabilityofthinmechanicalstructure,inordertofullyabsorbphotons,needtodesignandsynthesisofbroadspectrumabsorptionandhighextinctioncoefficientofthephotosensitizer;b)nanosemiconductorparticleinterfaceeffectinthecellstructureismoreprominent,theassembledstatemoleculesinnanointerfacewillsignificantlyaffectthephotoncaptureandelectroninjection,interfacethechemicalbondinggroupstructureneedfurtheroptimization;C)forfiberelectrodes,thechargetendstobelocalizedatthehighcurvatureregion,formingadistortedlocalhighelectricfield,whichaffectsthedegreeofcurvatureoftheinterfaceenergylevel,Theenergylevelsofrelatedmaterialsneedtoberematched.Forthenewtypeofwovenphotovoltaiccells,thestructureoftherelatedphotosensitiveandcarriertransportmaterialsneedstobeoptimized.Thesynthesisofphotosensitive materials,includingorganicdyes,metalcomplexes,inorganiccompoundsandmetalquantumdotmaterials,CIGSmaterials.Organicphotosensitivematerialsemphasizetheplanarconjugatestructurebetweenthedonorandacceptorgroups,broadentherangeofdyeabsorption,andintroducehyperbranchedgroupstoreducetheaggregationofdyemolecules.Organicphotosensitivematerialsemphasizetheplanarconjugatestructurebetweenthedonorandacceptorgroups,broadentherangeofdyeabsorption,andintroducehyperbranchedgroupstoreducetheaggregationofdyemolecules.Figure4.2.6neworganicdyestructurediagramofmetalcomplexesduetothepresenceoftransitionmetalcenters(MCCT),metalligand,transition(MLCT),ligandtometaltransition(LMCT)andligandtransition(ILCT)andotherelectronictransitions,easytoproducetheabsorptioncharacteristicofdiversity.Themolecularorbitalenergylevelscanbecontrolledbyligandchemicaltailoring,andthenthetotalspectralabsorptionofthefilmscanbecontrolled.Thedesignandsynthesisofmultipleseriescontaining1,10-phenanthrolineunitsasorganicsemiconductormoleculesonmetalcoordinationsitesofconjugatedaromaticorheterocyclicsystem(suchas4.2.7infigure.2.7),theygenerallyhaveapairofendgroups,suchasthiolandpyridineheterocyclic,usingbidentatechelatingpropertiesofPhenanthroline.Andtransitionmetalionswithdifferentcoordinationnumberandconfigurationtoachievelevelmodulation,semiconductorcomplexesor1D,2Dand3dtransitionmetalcoordinationpolymerscontainingPIconjugatedsystemswithdifferentconfigurations. Figure4.2.7partoftheorganicsemiconductormolecularstructurediagrambasedoninorganicphotosensitivematerialCIGS,inorganiccompoundsandmetalmaterialssuchasquantumdotsaremainlythroughthelatticestructureandatomiccompositionaccordingtotheenergylevelstructureofadjustingmaterial.Thedevelopmentofcarriertransportmaterialisdividedintothefollowingaspects:1)thechemicalstructureregulationofionicsolmolecularringsidegroups,toadjustenergystructure,makeitsuitableforthestudyofnanocrystallinephotovoltaiccellcanbewoven;2)discusscontainingoligothiophenederivativesandotherextendedaromaticheterocyclicmetalorganicsemiconductorsystemconstructionunit.Thecarriertransportcharacteristicsthroughthestructureofnano/micronscalecontrol;3)intothespectralresponsecharacteristicsofnanosiliconintegratedcontrolbatterysomespecialstructure,andstrengthenthecarriertransportcharacteristics.4)thepreparationandpropertiesofsemiconductornanophotoelectricfilms.Semiconductornanophotoelectricfilmsarethecarriersofnanofunctionalmaterials.Atthesametime,wehopethatitcanmodulatetheabsorptionandtransformationofincidentphotons,andformasupplementtotheabsorptioncharacteristicsofphotosensitivematerials.Thestudyintendstoadoptthefollowingscheme:1)oflightconversionfilm:modulationbymoleculardesignregulationcoordinationcompoundmolecularorbital,thephotonofaspecificwavelength(ultravioletandinfrared)havestrongabsorption,atthesametimebyfluorescenceandtwo-photonemissioneffectwillabsorblightintothebatteryusingeasilyvisiblelight(Figure4.2.8 figureleft).Designedandsynthesizedlightconversioncoordinationcompoundsaremisciblewithcertainpolymercompoundsandaremadebyspinortapecastingtoformatransparentfilmmaterialthatcoversthesurfaceofthebattery(asshowninfigure4.2.8right).Becausevisiblelightcantravelthroughthefilmwithouthindrance,ultravioletlightandinfraredlightareconvertedintovisiblelightbythefilmThespectralresponserangeofsiliconphotovoltaiccellscanbebroadened.Figure4.2.8ultravioletandinfraredlightconvertedtovisiblelight,intent,andlightconversionfilmdevicestructure2)thedesignandoptimizationofcompositecompoundfilmphotoelectrodebroadspectrumresponse:theuseofavarietyofliquidphasesynthesisofnanotechnology(includinghotwaterandmicrowave),photocatalyticnanostructurefilmmaterialtodevelopnewvisiblelightresponse.Byusingthetemplateandsurfactant,concentrationandratioofthereactants,controltheexperimentalsystemforexperimentalparameterssuchasreactiontemperatureandtime,inordertocontrolthemorphology,formationstructureiseasytoimprovephotonabsorptionrate.Studyonboththebuildingsuitableforchargeseparationandelectronictransmissionchannel,byhavingalayered,tubularmicrocompoundstructuresupportedonaflexibleconductivepad,madeofthinfilmvisiblelightabsorptionfunction.3)researchonflexiblesilicon photovoltaicthinfilm:polycrystallinesiliconthinfilmsonflexiblesubstrateplaced,ornanostructuredsiliconmaterialembeddedinpolymer,flexiblesiliconphotovoltaiccellmadeofthinflexible(seefigure4.2.9shown).Figure4.2.9FlexiblesiliconphotovoltaicfunctionalfilmstructureThemorphologiesandrelatedmolecularandelectronicpropertiesofself-assembledsemiconductorthinfilmsanddevicesareinvestigatedbymeansofSEM,AFM,STM,TEM,I-V,andcurvemeasurements,suchasvariabletemperatureconductivity,temperaturechange,photoresponse,andlightVcharacteristics,semiconductordopingcharacteristics,Coulombblockadeeffect,carriertransportmechanismandsoon.5)thestudyofphoton/carriertransportmechanism)themechanismofphotoncarriertransportisstudiedbyusingUV-VISandFT-IRabsorptionspectratostudytheopticalabsorptionandspectralabsorptionrangeofspacestructureswithspecialconfinement.PLspectroscopywasusedtomeasurethefluorescencequenchingcharacteristicsoftheconfinedspacestructures,soastostudytheseparationeffectsofphotogeneratedelectronholepairs.Accordingtothemacromesoscopicdeviceswithdifferentbraidingstructure,synthesisconditionsonthermalstability,bandgapwidth,spectralabsorptionandspectralrangeandlighteffectontheseparationefficiencyofelectronhole,andtheinfluenceontheperformanceofthebattery.Electrochemicalmeasurementsandcompleximpedancespectroscopywereusedtomeasurethe effectsofdifferentinterfaces.Theinterfacestructureanddiffusioneffectwerestudiedbyelectronmicroscopeobservationandcomponentanalysis.Four,annualplanresearchcontentTheprojectisfullystarted,thesystemplanningandconstructionoffiberbatteryresearchplatformarecarriedout.BasedontheDSSCsbattery,themicronanofibersofbraidedfiberflexiblephotovoltaiccellunitsareexploredExpectedgoalOverallplanning,establishingresearchteamandfibercellresearchplatformforacleardivisionoflabor,aprominentfeatureofthedeepmining;andstrictlyprovesthenovelstructurecharacteristicsofwovenfiberflexiblephotovoltaiccells;developedthe2~3lightanodeaperturesuitable,uniformdistribution,highspecificsurfacearea;thebasicrequirementsofweavingandothercrafts,clearrelatedmaterialsthebasicperformanceindex.Designedandsynthesized2~3kindsofhighlyefficientsolidionicelectrolytes.3-4patentswereappliedand10-15articlesofhighqualitySCIwerepublished;No.Thepreparationprocessofthericestructureisadoptedtorealizetheefficientfillingofthesolidelectrolyte.Thesystemexpandstheelectrodesubstratematerialand photosensitizer,OneExplorationofnewmaterialsforcarriertransportmaterialsandotherrelatedbatteries.ThesystemexploreselectricalconductioninmetallicwiresandcarbonfibersyearThesemiconductornanocrystalssuchasZnO,TiO2andCuOweregrownonthefibersubstratesurface,andtheinfluenceoftherelatedstructuralparametersonlightscatteringandcarriertransportefficiencywasinvestigated.No.TwoyearAnewtypeofhighperformanceandenvironmentfriendlysolidelectrolytematerialandhighsensitivephotosensitivestate/quasisolidelectrolytesystemDSSCs(2~3)areprepared.Optimizethefiberphotovoltaiccellcomponents(nanoflexiblebraidedfiberDSSCs,unitefficiencyofmorethan3%).Thesolidelectrolyteandtheelectrode)establishbraidedstructureinsidethecellcarriertransmission,TiO2porousfilm,optimizationofweavestructurecorrespondingbatterybatteryassemblyandcarryoutpreliminaryprocessofmodeldesign,module.Research。Thepreparationofinorganicsemiconductor photovoltaicsystemresearchunitofthecarrier/fiberstructurephotoniccellprototypedevice;apatentfor4-6,issuedahighqualitytransmissionmechanism,especiallythecompositesolidelectrolyteSCIpaper15-20;basedonthefirstyearofwork,focusingonthesolidmasstransferprocess,themicro/chargetheinterfacestructureofiondiffusionproperties,thecorrespondingdesignresearchcontentsBatterymodule.Combineddevicecharacterization,molecularstructureoptimizationofnewmaterialsforthedevelopmentofcarriertransportmaterial,photosensitizer,substratematerialandotherrelatedtotheone-dimensionalfiberbattery;batteryunitstructuretoexpandtootherphotovoltaicmaterialssystem.ExpectedgoalNo.Three2~3kindsofhighperformanceorganicsolidholetransportmaterials,photosensitizer,electrodebase,cellcell,deviceandpreparationmethodhavebeendevelopedrespectively.Materials;inthefibercelldeviceefficiencyofnewtypebatterymoduletheprincipleofmorethan4%;optimizetheweavestructureinsidethebatteryopticalstructure,setonthebasisofsystemtocarryouteffectiveanti2-3andwidephotonicefficientwovenbatterymodulestructure;spectrum absorptiontheoryofpatentfor4-7designandtechnicalstructure.SCIhighqualitypaperspublished20-30article;theprincipleofproof.Furtheroptimizationofdifferentphotovoltaicmaterialssystemoffiberbondingtheorysimulation,furtherstudyofGuangyangyearInterfacetransportmechanismofelectrode/electrolyte/electrode.Wewillfurtherpromotetheresearchanddevelopmentofnewmaterialsforbatteries,andjointlyoptimizesolidholetransportmaterialsandphotosensitivematerials;3~5kindsofchargetransfermaterialsandphotosensitizerssuitableforflexiblefiberbatterieswereselected;theefficiencyofwovenfiberphotovoltaiccellsreached6%;4-7patentswereappliedand20-30high-qualitySCIpaperswerepublished;No.Optimizingbatterycellnanostructureandimprovingbatterypreparationprocess,AnewflexibleandbraidedfiberdeviceforinorganicsemiconductormaterialsispreparedFour Furthermore,anactualbatterymodulewithhighefficiencyphotonemissionreductionandbroadspectrumabsorptionstructureisfurtherassembledandassembled;yearThestudyofcarrier/photontransportmechanismiscarriedoutfromdeviceelementtodevicemodule.Thesystemexplorestherelationshipbetweennewmodularprocessesandbatteryperformance.researchcontentsIndepthstudyofdevicemodularizationmethod,explorematerialExpectedgoalNo.Thelengthofthefiberbatteryunitismorethan1m;theareaoftheworkelectrodeofthebraidingstructureachievesthesynergyofthematerial,theprocessmethodandthemodulestructure;100*100mm2;finally,anewtypeofhigh-efficiencyphotovoltaiccellmoduleisformed.Thewholepreparationscheme;furtherexpandthenewhigh-efficiencyflexiblephotovoltaicdevicepatentfor4-7,issuedahighqualitymodulestructureindifferentmaterialsinthesystemshouldbethe20-30SCI;research;exploretheprincipleofefficientdevicemodulesizeofthecompletedprojectcompletion; FiveyearMagnify.Conductprojectsummary.I.researchcontentsMainresearchcontentsThisprojectisbasedonthepreviousstudyofnanocrystallinephotovoltaiccellfiberandsoon,adheretotheindependentintellectualpropertyrights,focusingonthenewweavingstructureofphotovoltaiccellscanbewovenandmicromesoscopicinterface/marginaleffectofthesetwofeatures,studiedphotonic/nanomesoscopicspacebetweenthespecialunitcarriertransportmechanism;nonexplorationfiberwithlargecurvaturespecialconfinementspaceuniformelectricfieldandnon-uniformstressfieldonthecarriertransportmechanismandtheinfluenceontheseparationmechanismofphotogeneratedelectronhole,matchingstructureanddevelopmentcharacteristicsofphotosensitiveelectrodeandcarriertransportmaterial;layerbylayermolecularnanosemiconductormaterials-unit-micronfiberelectrodemacrodevicemodulethecompositeassemblystructure,efficientphotonmulti-scaleoptimizationofbatteryAntireflectiveandbroadabsorptionstructure,andthedevelopmentofthebatterymodule.Newmethodofbuilding.Inordertopromotetheapplicationofnanometertechnologyandmaterialsinthefieldofnewenergyconversion,thehighefficiency,lowcostandflexiblecorestructureofphotovoltaiccellsisexplored.The researchwillfocusonthecoreofdeviceresearch,carryoutextensiveresearchonmaterialsandmechanisms,andfinallyachievethereliableandefficientfiberbatterydevicesasthemainresultsoftheproject.Thespecificcontentsinclude:thespecificresearchcontentsmainlyinclude:1.forthenewweavingdistortioninterfaceelectricfieldstructureinterfaceenergy,photovoltaiccells,thedesignandsynthesisofnovelphotosensitivematerialandcarriertransport,regulationofthesecondaryassemblyrolewithnanocrystallineandnanotubearraysnanostructures;inthisspecialclassofhighcurvaturesubstratestructurehighdensityphotonabsorptionandchargeseparationofinterfaceandinthisspecialclassofhighcurvaturesubstrateconstructhighdensityphotonabsorptionandchargeseparationofinterfaceandorderlylong-rangecarriertransmissionchannelcoexistencesystem;orderlylong-rangecarriertransmissionchannelcoexistencesystem;2.designandconstructionofopticalwaveguideandlightscatteringphotoncapturelightreflection,basedonthestructure;therefractionandscatteringcharacteristicsofthemesoscopicstructureofinterfacecontrol,toachievethedepthoflightphotonsintheactivelayerandarecaughtwithintheUniformdistribution;3.Thecombinationofmicrowave,electricfieldandchemicalmeansofregulationofmicronfiberelectrodenanosemiconductororderedstateandinterfaceband,constructingmicronanocarrierchannelandnanoopticalantennastructuremoreefficient,designedandassembledbasedonfiberbasedmicro/nanostructuremodelcanbewovenphotovoltaicdevices;to establishanewmethodforstructureandperformancecharacterizationthistypeofdevice;using4.differentfiberhybridbatterybandstrongabsorptionofweaving,designandimplementationofhighphotonantireflectionstructureandspectrumabsorptioncellmodulestructure,improvetheutilizationefficiencyofvisiblelightandnearinfraredenergy;5.toexplorenewnanostructureinnonuniformelectricfieldandnon-uniformstressfieldcurrentthespecialseparationandtransportmachinePhysicalandopticalfibernetwork,cage,micronanoopticalphotonlimitedspacewithinthedomainofreflection,absorption,interferencebehavior;6.accordingtothestructurecharacteristicsofanewtypeofphotovoltaiccells,thedesignandsynthesisofsubbandabsorptionandabsorptionspectraofnewphotosensitiveandcarriertransportmaterial,multiscalesynergisticregulationofmicro/nanostructureelectrodemateriallayerandcarrierassemblytransfermateriallayer,photosensitivemateriallayerandthecouplingeffect,theoptimizationofinterfacestructure,improvethecomprehensiveefficiencyofthephotovoltaicdevice,thesystemsummarizesthestructure-activityrelationshipofnanostructureassembly.OneThesandinthedesertislikesnow,andthemooninYanshanseemslikeahook.Takethingsastheycome.Jiangshantalentedgeneration,outoftheleadforhundredsofyears.